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Abstract: ADVENTURE on Windows is a collection of finite element modules including
ADVENTURE Solid ported to Microsoft Windows for use in a single CPU. It supports the iterative
domain decomposition method with a preconditioner for the solution of linear equations. This paper
analyzed 3 dimensional linear elastic stress problems and measured the performance of the finite ele-
ment software ADVENTURE on Windows. A complete finite element analysis from CAD design to
visualization was performed in this research successfully. Two simple models have been considered for
the linear elastic problems. Computational results show the computation time, required memory, con-
vergence criteria and some limitations of the software.
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Introduction

A finite element method is a computational
technique for the numerical solution of engineer-
ing problems such as elasticity analysis [1], heat
transfer [2] and fluid mechanics [3]. There are
many commercial finite element softwares in the
field of Engineering. ADVENTURE on Win-
dows [4] is one of them, which can perform the
linear elasticity analysis using a single CPU. This
module is a collection of finite element modules
including: ADVENTURE CAD [4], a polygon-
based solid modeling program; ADVEN-
TURE TriPatch module [4], a triangular surface
patches generating program from a solid model;
ADVENTURE TetMesh module [4], a tetrahe-
dral mesh generating program from the triangu-
lar surface patches; ADVENTURE BCtool [4],
amodule used to set up boundary conditions onto
a finite element mesh; ADVENTURE Metis [4]
a domain decomposition module in a parallel
environment; ADVENTURE Solid [1,4] an elas-
tic stress analysis solver; ADVENTURE Visual
[4] a module which can visualize deformation
contours on surfaces and cross sections, tempera-
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ture, flux etc. All of the above modules are Linux
based. ADVENTURE on Windows ported them
to Microsoft Windows for using in a single CPU.
The finite element solver (ADVENTURE Solid)
employed in the software uses the Hierarchical
Domain Decomposition Method (HDDM) [5]
which decomposes the whole model (problem)
into some subdomains. The degrees of freedom
inside the subdomains are solved using the
Gaussian elimination method while the degrees
of freedom that are shared by more than two
subdomains are solved by the Conjugate Gradi-
ent (CG) [6] method. In addition, a diagonal scal-
ing and a Balancing Domain Decomposition
(BDD) [7] preconditioner are employed in the
CG method. This paper intended to perform the
linear elasticity analysis on two selected models
using the ADVENTURE on Windows and meas-
ures the performance as well as some limitations
of the software. A complete finite element analy-
sis was thoroughly studied in this research. The
computational performance of the finite element
solver was also measured. Numerical results
show that BDD is the most effective solver for
any kind of problem. Based on the performance
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analysis some recommendations for the new us-
ers are also highlighted in the paper.

Materials and Methods
Flow Analysis

This research performed the complete finite
element analysis of a elasticity problem. At first
we prepare the solid model using the commer-
cial CAD software and finally we visualize the
result using the ADVENTURE software. The
complete flow chart is shown in Fig. 1.
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Fig. 1. Flow analysis.

For the model preparation, commercial
CAD software, Meshman [8] was used. The
surface patch and the mesh were generated using
the software ADVENTURE TriPatch and
ADVENTURE TetMesh. Then the material
properties and boundary conditions were set up
using the software ADVENTURE BCtool. The
ADVENTURE Metis was used to decompose
the whole domain while the stress analysis was
performed using the ADVENTURE  Solid.
Finally, the results were visualized by the
ADVENTURE Visual.
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Formulation of the Elasticity Analysis

To explain the theory of elasticity analysis
employed in the ADVENTURE on Windows, let
us consider a structural problem concerning a
domain Q, as shown in Fig. 2. Here, F' is the trac-
tion force applied on the boundary r, B, the body
force applied in the domain Q, and 7 the pre-
scribed displacement on the boundary r .

Fundamental equations of this structural
problem are summarized as follows:

z,,+B =0 in Q
£y = (”,-,,,- +tu,, )/2 in Q
Ty = Dijmngigfn) in Q (1
Tn; - F =0 onl,
u, =u, onT,
u
Iy

Fig. 2. Domain analysis.

where, i, j, m, n take the value 1, 2, 3, u, is dis-
placement, £;a strain tensor, T, stress tensor, Dijmn
a coefficient tensor of the Hookis law and n, an
outer normal vector on the boundary I', respec-
tively.

The finite element (quadratic tetrahedral)
discretization of Eq. 1 yields a linear system of
the form
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Ku=b. )

where, K, u and b are the stiffness matrix, the
displacement vector and the force vector,
respectively. In this research, we analyzed the
elasticity problem by using the software
ADVENTURE Solid where the BDD method
based on the HDDM system was employed.

Domain Decomposition Method

The domain Q is decomposed into N non-

.....

can be generated by subassembly:
N b)) pli
K 22;=1 ROK®pOT (3)

where RV is the 0-1 matrix which translates the
global indices of the nodes into local numbering.
Let u® be the vector corresponding to the
elements in Q® and it can be expressed as u') =
ROTy®  Each is split into degrees of freedom,
which correspond to, called interface degrees of
freedom and the remaining interior degrees of
freedom. The subdomain matrix, vector and 0-1
matrices are then split accordingly:

o (K9 3 4
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and R = (R RY) (6)

After eliminating the interior degrees of
freedom, the problem of Eq. 2 reduces to a prob-
lem on interface,

Su,=g (7)

where s =YY RYSORYT is assumed to be posit-
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ive definite, u, is the vector of the unknown
variables on the interface, g is a known vector
and S¥ are the local Schur complements of
subdomain i = 1,..., N, assumed to be positive
semi-definite. The problem of Eq. 7 is solved by
a preconditioned CG method which solves a
problem.

=M ®)

where 7 is the residual of Eq. 7 and M is a
preconditioner. When the interface problem is
solved iteratively, of course, an efficient solution
of the large scale problems depends on how we
choose an efficient and scalable preconditioner.

Balancing domain decomposition method
(BDD)

The BDD preconditioning technique pro-
posed by Jan Mandel [7] uses at each CG itera-
tion solution of the local Neumann-Neumann
problems on the subdomains coupled with a
coarse problem in a coarse space. The BDD
preconditioner is of the form:

M ypp= 0.+ ~0,8)0,(-S0,) )

where Q, is the local level part and Q. is the
coarse level part of the preconditioner.

Local Level

The local level part of the preconditioner
basically involves the solution of local problems.
is O, expressed by

N SO el)+ G i
0, =zi:1Rf(?)D()S() D()TRg)T (10)

The dagger (+) indicates pseudo-inverse, since
the S7 is singular for floating subdomain. The
BDD method uses a collection of matrices D
that determine partition of unity on interface
2,7),
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> RODORY =1. (11)

The simplest choice for D is the diagonal matrix
with diagonal elements equal to the reciprocal
of the number of subdomains with which the
degree of freedom is associated.

Coarse Level

The application of the coarse term
0. =R, (Rér SR, )’1R0T amounts to the solution of a

coarse problem whose coefficient matrix is
S =R,'SR,. The operator R translates the coarse
degrees of freedom to the corresponding global
degrees of freedom and is defined by

R, =[RVDOZO, . RMD™zM] (12)
comes from the

For the structural problem
degrees of freedom of rigid body of motion (1).

Simplified diagonal scaling (DIAG)

We choose a diagonal matrix as a precon-
ditioner whose diagonal elements are constructed

from the corresponding ones of g (). We define
the diagonal matrix

N i . i)W poi
Opiac Zzizl Ry’ (dlag (K1(98) )) Ry (13)
Results and Discussion

This research considered an L-shaped model
(Fig. 3) which was approximately 50 mm on the
longest edge and the sectional shape was 10 mm
x 10 mm and a cubic model (Fig. 4) which was
approximately 20 mm % 20 mm X 20 mm for the
linear elasticity analysis. The sizes of the model
are shown in the Table 1. Fig. 5 shows the relation-
ship between the node density and degrees of
freedom (for L-shaped model). For a fixed size
problem, decreasing the node density resulted in
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increasing the number of nodes, hence increas-
ing the number of degrees of freedom. Same ma-
terial properties as Youngis Modulus 21000.0
MN/m?, Poissonis Ratio 0.4, Mass density 760.0
kg/m* were set for both models. For the L-shaped
model a tensile load on the face 1(1.0N per unit
area in the positive X direction) and constraint
on the face 2 was applied. For the cubic model, a
compressive load on face 1 (1.0N per unit area
in the negative Y direction) and constraint on face
2 was applied. Fig. 6 shows the visual result
(modifying the value of magnification factor of
deformation as 40.0) of the L-shaped model
which shows the deformation along X axis. Fig.
7 depicts the visual result (modifying the value
of magnification factor of deformation as 100)
of the cubic model which shows the deforma-

Table 1.
Size of the model.
Model 1 Model 2
(L-shaped) | (cubic)
Number of subdomains 42 38
Number of Nodes 3943 3231
Degrees of Freedom 11829 9693
Table 2.

Computational performances (L-shaped model).

Computation

No of iteration | Memory (MB)

time (sec)

\ . . .
St(; ;:r L-shaped| Cubic |L-shaped| Cubic | L-shaped | Cubic
CG 453 1492 6.2 7.18 28.2 93.2
HDDM 244 745 12.3 13.82 15.3 45.5
BDD 28 26 20.3 22.5 2.61 2.28

Table 3.

Performance comparison among different
CPU (RAM size).

RAM Maximum Computation
size (MB) DOF time (min)
128 115,026 220.2
256 186,921 113
512 463,071 137
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Face 1

Fig. 3. Mesh of L-shaped model.

Face 1

Fig. 4. Mesh of Cubic model.
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Fig. 5. Degrees of freedom vs. Node density.
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Fig. 6. Deformation (X 40) in the X-direction
(L-shaped model).

Fig. 7. Deformation (X 10000) in the
Y-direction (Cubic model).
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Fig. 8. CG convergence (L-Shaped model).
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Fig. 9. Numerical scalability of BDD method.

tion along Y axis. The computational perform-
ance for both models is shown in Table 2. In Ta-
ble 2, CG represents DDM [5] without any
preconditioner, HDDM [1, 2] represents DDM
with a simplified diagonal scaling (Eq. 13) and
BDD represents the DDM with the BDD
preconditioner (Eq. 12). Among the three solv-
ers, BDD showed better performance compared
to CG and HDDM solvers. The CG convergence
of L-Shaped model in Fig. 8 shows that BDD
converged rapidly compared to the other two
solvers. Fig. 9 shows the relation between the
number of subdomains and number of iterations
for BDD and HDDM solver. It shows that, for a
fixed size problem, with HDDM solver increas-
ing the number of subdomains results in increas-
ing the number of iterations, hence increasing
the computation time. With BDD solver, the
number of iterations is independent of the number
of subdomains. So, BDD is the most effective
solver for any kind of problem. The problem size
(maximum degrees of freedom) that can be
solved in the computer is specified in Table 3. It
is concluded that by increasing the RAM size
one can solve the large scale problem with the
same computer.

This paper compared three finite element
solvers DDM [5], HDDM [1, 2] and BDD [7].
With the BDD discussed in this paper the number
of iterations is reduced to 1/16 of original DDM
[5] and computational time is reduced to 1/40.
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But BDD requires more memory compared with
the algorithm discussed in [1, 2]. Since it takes
more memory, this research suggests the user to
use BDD solver in the computer with sufficient
memory. Again BDD is numerically scalable in
elasticity problem as it is in heat transfer prob-
lem [9] and fluid mechanics problem [10].

Conclusion

A complete finite element process was thor-
oughly studied in this research. A simple elastic
problem was analyzed using the finite element
software ADVENTURE on Windows. The per-
formance of the software was measured. BDD
solver was found as the most efficient one. It
converged rapidly and solved the problem with
minimum computation time compared with the
other solvers. The number of iterations was in-
dependent of the number of subdomains for the
BDD solver hence it is said in this study to be
numerically scalable. Based on the computation
time, some information for the new user is high-
lighted. Future work is needed to further analyze
the practical elastic problem using the above
mentioned software.

References

1. Shioya, R., Ogino, M., Kanayama, H. and
Tagami, D. 2003. Large Scale Structural Analysis
Using a Balancing Domain Decomposition Method.
Key Eng. Materials. 243,244:21-26.

2. Shioya, R., Kanayama, H., Mukaddes, A.M.M.
and Ogino, M. 2003. Heat Conductive Analysis
with Balancing Domain Decomposition. Theor
Appl. Mech. 52:43-53.

3. Goldfeld, O.2003. Balancing Neumannn-Neumann
for (In) Compressible Linear Elasticity and Stokes-
Parallel Implementation. Proc. of 14th Intl. Conf.
on Domain Decomposition Methods for Partial dif-
ferential Equations.

4.  http://adventure.q.t.u-tokyo.ac.jp/

5. Yagawa, G. and Shioya, R. 1993. Parallel Finite
Elements on a Massively Parallel Computer with
Domain Decomposition. Comput. Systems Eng.
4:495-503.

6.  Yousef, S. 1996. Iterative Methods for Sparse Lin-



103

ear Systems. PWS Publishing Company, Boston,
MA 02116.

Mandel, J. 1993. Balancing Domain Decomposi-
tion. Comm. Numer. Methods Eng. 9:223-241.
http://www.meshman.jp/

Mukaddes, A.M.M., Ogino, M., Kanayama, H.
and Shioya, R. 2006. A Scalable Balancing Domain
Decomposition Based Preconditioner for Large

10.

A. M. M. Mukaddes & M. M. Islam

Scale Heat Transfer Problems. JSME Int. J. Ser. B.
49-2:533-540.

Kanayama, H., Ogino, M., Takesue, N. and
Mukaddes, A.M.M. 2005. Finite Element Analy-
sis for Stationary Incompressible Viscous Flows
Using Balancing Domain Decomposition. Theor

Appl. Mech. 54:211-219.



